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Particle Swarm Optimization (PSO) is a population based stochastic search algorithm inspired from the natural behavior of bird 

flocking or fish schooling. Due to its easiness in numerical implantations, PSO is used to solve a wide range of inverse problems. 
However, a PSO is often trapped into local optima while dealing with complex and real world problems. To tackle this problem, a new 
modified PSO is presented by introducing a mutation mechanism and using dynamic algorithm parameters. The experimental results 
on different case studies show that the proposed PSO obtain the best results among the tested algorithms. 
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I. A MODIFIED PSO 

OST inverse problems in electrical engineering involve 
optimizations of a multimodal cost function. As 

traditional deterministic methods are unable to find the global 
solutions of these kinds of problems, a lot of efforts have been 
devoted to the study of stochastic and heuristic algorithms in 
the last couple of decades. In this context, a wealth of 
stochastic methods, commonly called evolutionary algorithms 
(EA) including, for example, simulated annealing method, 
genetic algorithm, tabu search method, ant colony algorithm, 
as well as particle swarm optimization, have all been proposed 
and used successfully to solve typical electromagnetic design 
problems. As a consequence, EAs have become the standards 
and paradigms for solving inverse problems. However, so far 
there is no any universal evolutionary algorithm which is 
equally successful for all engineering problems, and it is 
essential to keep the diversity of the EAs. 

PSO is a population based stochastic optimal algorithm 
stimulated by the collective behavior of bird flocking or fish 
schooling for finding the most favorable solution of an optimal 
problem. Due to its meta-heuristic characteristics, PSO is 
well-suited for solving complex and multi-dimensional 
problems. As a result, different variants of PSOs have been 
proposed and applied in many research areas. However, the 
main drawback of existing PSOs is their premature 
convergence. In this regard, a modified PSO is proposed.  For 
space limitations, the details including the terms and 
parameter definitions on a general PSO are referred to [1] and 
the references therein, and only the proposed modifications 
will be explained in this digest. 

A. Introduction of a Mutation Operation  

In the original PSO, in a particular dimension, if the pbest 
and gbest are trying to guide the current particle to different 
direction, this particle will fluctuate in the feasible space. On 
the other hand, if the pbest and gbest have the same direction as 
that of the present particle, the particle will follow the same 
evolution direction. In such situations, the particles cannot 
escape from the local optimum if gbest is far away from the 
global optimal point. To address this issue, a mutation 
operation is introduced. For this goal, another best particle, 

Pbest1, is defined to motivate the particles to move in different 
directions during the optimization process to guarantee the 
particles to jump out local optimum and to easily explore the 
global optimal position. 

Moreover, to use the dynamic information gathered from 
the current population to guide the searches in the mutation 
operation, a threshold value of the population is firstly 
introduced and defined as 
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where,  pop_valuei is the fitness value of  particle i,  N is  the 
size of the swarm, K is a user defined constant which is set to 
be 0.2 after comprehensive numerical experiments.  

Secondly, the current population is divided into two 
subpopulations according to this threshold value. The particles 
whose fitness values are smaller than this threshold are 
consisted of a bad subpopulation, and the reminders of a good 
subpopulation. Thirdly, one will randomly select a best 
particle as previously mentioned, and named as Pbest1, from all 
of the Pbest particles. This Pbest1 will be used to design the 
following proposed mutation mechanism. 

Step 1: A particle is randomly generated in the current 
search space using the below mechanism  

( ( ), ( )j j jY rand a t b t )                                            (2) 

where ( )ja t  and ( )jb t   are, respectively the lower and upper 

bounds of the decision parameters in the jth dimension, rand () 
is a uniform random number in the specified interval, t is the 
index of generations.  

Step 2: A trial particle, *
1 2 3{ , , ............... }J dX x x x x    , is then 

generated  from 

1
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where bj is a constant number. By using an error and trial 
approach, bj is set to 0.5.  

Step 3: One compares the trial particle with the worst one in 
the current population. If the trial particle is better than the 
worst one, the worst particle will be replaced by the trial one; 
otherwise, the worst particle is survived in the same position. 
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B. Dynamic Parameters Setting 

To keep a good balance between exploration and 
exploitations searches, dynamic algorithm parameters are 
proposed and used. 

As demonstrated in the literature, a large inertia weight will 
favor exploration searches and a small one will bias 
exploitation searches [2]. Therefore, it is essential to use a 
dynamic inertia weight. In this paper, the maximum and 
minimum values of the inertia weight are, respectively, 0.05 
and 0. Moreover, to increase the diversity of the particles, the 
inertia weight should have some randomness characteristics. 
Based on these observations, one proposes a random updating 
formula for the inertia weight as 

    ()W K rand                              (4) 

where K =1/N, rand() is a random parameter uniformly 
distributed in [0,1]. 

The two learning factors, the social constant, c1, and 
cognitive constant, c2, are other two important parameters 
deciding the performances of a PSO. A larger social constant 
as compare to the cognitive constant has the possibility to 
move the particles prematurely and, as a result, all the 
particles coverage to local optimum, In contrast, higher 
cognitive constant compared to the social constant will results 
in excessive wandering of the individuals. In order to bias the 
particles escaping from local optimum and coverage to the 
global optimal solution, the aforementioned two learning 
constants are updated dynamically by using 

1 1 ()c rand                                      (5) 
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II. NUMERICAL EXAMPLES 

A. Function Tests 

To test the proposed modified PSO algorithm, some well 
known benchmarks of mathematical test functions are firstly 
solved, and its performances are compared to the basic PSO 
(BPSO), GPSO [3], and IPSO [4]. For a fair comparison, all 
algorithms use the same parameters. Moreover, only the 
numerical results on the function defined below are reported 
for space limitations. The function is defined as 
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The global minimum point of this function is at xi=0 with 
the function value of 0.  In the numerical experiment, the 
dimension of the decision parameters is 30. To evaluate the 
average performance of an algorithm, every method runs 50 
times, and the mean values, fmean, of the final solutions for 50 
random runs of different algorithms are compared in Table I. 
To give an intuitive impression about the convergent 
performances of an algorithm, the convergent characteristics 
of a typical run for each algorithm are depicted in Fig. 1. 
Obviously, the proposed MPSO outperforms other three PSOs 
in both solution quality (objective function) and the 
convergence speed. 

 

TABLE I 
MEAN VALUES OF THE FINAL SOLUTIONS FOR 50 RANDOM RUNS OF 

DIFFERENT ALGORITHMS 

Algorithm BPSO IPSO GPSO 
Proposed 
MPSO 

fmean 2.40×109 5.36×10-4 3.54×10-10 9.68×10-228 

 
Fig 1. The convergence characteristics of different algorithms. 

B. Application 

The proposed algorithm is then used to solve the TEAM 
Workshop problem 22 [5],[6].  Also, the aforementioned 4 
algorithms are used to solve this case study for performance 
comparisons, and the mean values of the final solutions for 10 
random runs of each algorithm are tabulated in Table II. Again, 
these numerical results on this case study demonstrate that the 
proposed MPSO outperforms other three well recognized 
variants of PSOs in terms of both solution quality and 
convergence speed. 

TABLE II 
MEAN VALUES OF THE FINAL SOLUTIONS FOR 10 RANDOM RUNS OF 

DIFFERENT ALGORITHMS FOR APPLICATION 

Algorithm BPSO IPSO GPSO 
Proposed 
MPSO 

fmean 0.1356 0.1278 0.1123 0.0929 

 
In summary, from the numerical results on the two case 

studies, it is clear that the performance of the proposed MPSO 
is significantly better than other three ones in terms of both 
solution quality and convergence performance. 
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